0 Mėgstami
0Krepšelis

The Gohberg Anniversary Collection: Volume II: Topics in Analysis and Operator Theory

169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

In this article we shall use two special classes of reproducing kernel Hilbert spaces (which originate in the work of de Branges [dB) and de Branges-Rovnyak [dBRl), respectively) to solve matrix versions of a number of classical interpolation problems. Enroute we shall reinterpret de Branges' characterization of the first of these spaces, when it is finite dimensional, in terms of matrix equations of the Liapunov and Stein type and shall subsequently draw some general conclusions on rational m x m matrix valued functions which are "J unitary" a.e. on either the circle or the line. We shall also make some connections with the notation of displacement rank which has been introduced and extensively studied by Kailath and a number of his colleagues as well as the one used by Heinig and Rost [HR). The first of the two classes of spaces alluded to above is distinguished by a reproducing kernel of the special form K (>.) = J - U(>')JU(w)* (Ll) w Pw(>') , in which J is a constant m x m signature matrix and U is an m x m J inner matrix valued function over ~+, where ~+ is equal to either the open unit disc ID or the open upper half plane (1)+ and Pw(>') is defined in the table below.

Informacija

Serija: Operator Theory: Advances and Applications
Leidėjas: Birkhäuser Basel
Išleidimo metai: 2011
Knygos puslapių skaičius: 560
ISBN-10: 3034899750
ISBN-13: 9783034899758
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Interdisciplinary studies

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Gohberg Anniversary Collection: Volume II: Topics in Analysis and Operator Theory“

Būtina įvertinti prekę

Goodreads reviews for „The Gohberg Anniversary Collection: Volume II: Topics in Analysis and Operator Theory“