0 Mėgstami
0Krepšelis

The Gross-Zagier Formula on Shimura Curves

167,79 
167,79 
2025-07-31 167.7900 InStock
Nemokamas pristatymas į paštomatus per 16-20 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

Informacija

Autorius: Xinyi Yuan, Shou-Wu Zhang, Wei Zhang,
Leidėjas: Princeton University Press
Išleidimo metai: 2012
Knygos puslapių skaičius: 268
ISBN-10: 0691155925
ISBN-13: 9780691155920
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Number theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Gross-Zagier Formula on Shimura Curves“

Būtina įvertinti prekę

Goodreads reviews for „The Gross-Zagier Formula on Shimura Curves“