0 Mėgstami
0Krepšelis

The Homotopy Index and Partial Differential Equations

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The homotopy index theory was developed by Charles Conley for two­ sided flows on compact spaces. The homotopy or Conley index, which provides an algebraic-topologi­ cal measure of an isolated invariant set, is defined to be the ho­ motopy type of the quotient space N /N , where is a certain 1 2 1 2 compact pair, called an index pair. Roughly speaking, N1 isolates the invariant set and N2 is the "exit ramp" of N . 1 It is shown that the index is independent of the choice of the in­ dex pair and is invariant under homotopic perturbations of the flow. Moreover, the homotopy index generalizes the Morse index of a nQnde­ generate critical point p with respect to a gradient flow on a com­ pact manifold. In fact if the Morse index of p is k, then the homo­ topy index of the invariant set {p} is Ik - the homotopy type of the pointed k-dimensional unit sphere.

Informacija

Autorius: Krzysztof P. Rybakowski
Serija: Universitext
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 1987
Knygos puslapių skaičius: 224
ISBN-10: 3540180672
ISBN-13: 9783540180678
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Calculus and mathematical analysis

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Homotopy Index and Partial Differential Equations“

Būtina įvertinti prekę

Goodreads reviews for „The Homotopy Index and Partial Differential Equations“