0 Mėgstami
0Krepšelis
287,96 
287,96 
2025-07-31 287.9600 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field theory. This conjecture has now been proved for all F and n, but the arguments are long and rely on many deep ideas and techniques. This book gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groupsand the structure theory of local fields. It uses only local methods, with no appeal to harmonic analysis on adele groups.

Informacija

Autorius: Guy Henniart, Colin J. Bushnell,
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 2006
Knygos puslapių skaičius: 352
ISBN-10: 3540314865
ISBN-13: 9783540314868
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Groups and group theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Local Langlands Conjecture for GL(2)“

Būtina įvertinti prekę

Goodreads reviews for „The Local Langlands Conjecture for GL(2)“