0 Mėgstami
0Krepšelis

The Maximum Consensus Problem: Recent Algorithmic Advances

82,48 
82,48 
2025-07-31 82.4800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Outlier-contaminated data is a fact of life in computer vision. For computer vision applications to perform reliably and accurately in practical settings, the processing of the input data must be conducted in a robust manner. In this context, the maximum consensus robust criterion plays a critical role by allowing the quantity of interest to be estimated from noisy and outlier-prone visual measurements. The maximum consensus problem refers to the problem of optimizing the quantity of interest according to the maximum consensus criterion. This book provides an overview of the algorithms for performing this optimization. The emphasis is on the basic operation or "inner workings" of the algorithms, and on their mathematical characteristics in terms of optimality and efficiency. The applicability of the techniques to common computer vision tasks is also highlighted. By collecting existing techniques in a single article, this book aims to trigger further developments in this theoretically interesting and practically important area.

Informacija

Autorius: David Suter, Tat-Jun Chin,
Serija: Synthesis Lectures on Computer Vision
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2017
Knygos puslapių skaičius: 196
ISBN-10: 3031006909
ISBN-13: 9783031006906
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Pattern recognition

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Maximum Consensus Problem: Recent Algorithmic Advances“

Būtina įvertinti prekę

Goodreads reviews for „The Maximum Consensus Problem: Recent Algorithmic Advances“