0 Mėgstami
0Krepšelis

The Non-Equilibrium Greens Function Method for Nanoscale Device Simulation

174,13 
174,13 
2025-07-31 174.1300 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies and scattering self-energies, are examined and efficient methods for their evaluation are explained. Finally, the application of these methods to study novel electronic devices such as nanotubes, graphene, Si-nanowires and low-dimensional thermoelectric devices and photodetectors are discussed.

Informacija

Autorius: Mahdi Pourfath
Serija: Computational Microelectronics
Leidėjas: Springer Vienna
Išleidimo metai: 2016
Knygos puslapių skaičius: 276
ISBN-10: 3709148383
ISBN-13: 9783709148389
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Condensed matter physics (liquid state and solid state physics)

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „The Non-Equilibrium Greens Function Method for Nanoscale Device Simulation“

Būtina įvertinti prekę

Goodreads reviews for „The Non-Equilibrium Greens Function Method for Nanoscale Device Simulation“