0 Mėgstami
0Krepšelis
127,03 
127,03 
2025-07-31 127.0300 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

The finite simple groups are basic objects in algebra since many questions about general finite groups can be reduced to questions about the simple groups. Finite simple groups occur naturally in certain infinite families, but not so for all of them: the exceptions are called sporadic groups, a term used in the classic book of Burnside [Bur] to refer to the five Mathieu groups. There are twenty six sporadic groups, not definitively organized by any simple theme. The largest of these is the monster, the simple group of Fischer and Griess, and twenty of the sporadic groups are involved in the monster as subquotients. These twenty constitute the Happy Family, and they occur naturally in three generations. In this book, we treat the twelve sporadics in the first two generations. I like these twelve simple groups very much, so have chosen an exposition to appreciate their beauty, linger on details and develop unifying themes in their structure theory. Most of our book is accessible to someone with a basic graduate course in abstract algebra and a little experience with group theory, especially with permu­ tation groups and matrix groups. In fact, this book has been used as the basis for second-year graduate courses.

Informacija

Autorius: Robert L. Jr. Griess
Serija: Springer Monographs in Mathematics
Leidėjas: Springer Berlin Heidelberg
Išleidimo metai: 1998
Knygos puslapių skaičius: 180
ISBN-10: 3540627782
ISBN-13: 9783540627784
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Groups and group theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Twelve Sporadic Groups“

Būtina įvertinti prekę

Goodreads reviews for „Twelve Sporadic Groups“