0 Mėgstami
0Krepšelis

Two-dimensional Crossing and Product Cubic Systems, Vol. I: Self-linear and Crossing-quadratic Product Vector Field

287,96 
287,96 
2025-07-31 287.9600 InStock
Nemokamas pristatymas į paštomatus per 18-22 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:

-        double-inflection saddles, 

-        inflection-source (sink) flows,

-        parabola-saddles (saddle-center),

-        third-order parabola-saddles, 

-        third-order saddles and centers.

 

·        Develops a theory of crossing and product cubic systems with a self-linear and crossing-quadratic product vector field;

·        Presents singular equilibrium series with inflection-source (sink) flows and networks of simple equilibriums;

·        Shows equilibrium appearing bifurcations of (2,2)-double-inflection saddles and inflection-source (sink) flows.

Informacija

Autorius: Albert C. J. Luo
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2025
Knygos puslapių skaičius: 252
ISBN-10: 3031595815
ISBN-13: 9783031595813
Formatas: Knyga kietu viršeliu
Kalba: Anglų
Žanras: Cybernetics and systems theory

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Two-dimensional Crossing and Product Cubic Systems, Vol. I: Self-linear and Crossing-quadratic Product Vector Field“

Būtina įvertinti prekę

Goodreads reviews for „Two-dimensional Crossing and Product Cubic Systems, Vol. I: Self-linear and Crossing-quadratic Product Vector Field“