0 Mėgstami
0Krepšelis

Ulams Conjecture on Invariance of Measure in the Hilbert Cube

93,15 
93,15 
2025-07-31 93.1500 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

¿This book discusses the process by which Ulam's conjecture is proved, aptly detailing how mathematical problems may be solved by systematically combining interdisciplinary theories. It presents the state-of-the-art of various research topics and methodologies in mathematics, and mathematical analysis by presenting the latest research in emerging research areas, providing motivation for further studies. The book also explores the theory of extending the domain of local isometries by introducing a generalized span. For the reader, working knowledge of topology, linear algebra, and Hilbert space theory, is essential. The basic theories of these fields are gently and logically introduced. The content of each chapter provides the necessary building blocks to understanding the proof of Ulam¿s conjecture and are summarized as follows: Chapter 1 presents the basic concepts and theorems of general topology. In Chapter 2, essential concepts and theorems in vector space, normed space, Banach space, inner product space, and Hilbert space, are introduced. Chapter 3 gives a presentation on the basics of measure theory. In Chapter 4, the properties of first- and second-order generalized spans are defined, examined, and applied to the study of the extension of isometries. Chapter 5 includes a summary of published literature on Ulam¿s conjecture; the conjecture is fully proved in Chapter 6.

Informacija

Autorius: Soon-Mo Jung
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2023
Knygos puslapių skaičius: 200
ISBN-10: 3031308859
ISBN-13: 9783031308857
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Functional analysis and transforms

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Ulams Conjecture on Invariance of Measure in the Hilbert Cube“

Būtina įvertinti prekę

Goodreads reviews for „Ulams Conjecture on Invariance of Measure in the Hilbert Cube“