0 Mėgstami
0Krepšelis

Understanding Atmospheric Rivers Using Machine Learning

84,68 
84,68 
2025-07-31 84.6800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

This book delves into the characterization, impacts, drivers, and predictability of atmospheric rivers (AR). It begins with the historical background and mechanisms governing AR formation, giving insights into the global and regional perspectives of ARs, observing their varying manifestations across different geographical contexts. The book explores the key characteristics of ARs, from their frequency and duration to intensity, unraveling the intricate relationship between atmospheric rivers and precipitation. The book also focus on the intersection of ARs with large-scale climate oscillations, such as El Niño and La Niña events, the North Atlantic Oscillation (NAO), and the Pacific Decadal Oscillation (PDO). The chapters help understand how these climate phenomena influence AR behavior, offering a nuanced perspective on climate modeling and prediction. The book also covers artificial intelligence (AI) applications, from pattern recognition to prediction modeling and early warning systems. A case study on AR prediction using deep learning models exemplifies the practical applications of AI in this domain. The book culminates by underscoring the interdisciplinary nature of AR research and the synergy between atmospheric science, climatology, and artificial intelligence

Informacija

Autorius: Shivam Singh, Manish Kumar Goyal,
Serija: SpringerBriefs in Applied Sciences and Technology
Leidėjas: Springer Nature Switzerland
Išleidimo metai: 2024
Knygos puslapių skaičius: 84
ISBN-10: 3031634772
ISBN-13: 9783031634772
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Process engineering technology and techniques

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Understanding Atmospheric Rivers Using Machine Learning“

Būtina įvertinti prekę

Goodreads reviews for „Understanding Atmospheric Rivers Using Machine Learning“