0 Mėgstami
0Krepšelis
169,38 
169,38 
2025-07-31 169.3800 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for­ mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func­ tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur­ 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.

Informacija

Autorius: Pei-Chu Hu, Chung-Chun Yang, Ping Li,
Serija: Advances in Complex Analysis and Its Applications
Leidėjas: Springer US
Išleidimo metai: 2011
Knygos puslapių skaičius: 480
ISBN-10: 1441952438
ISBN-13: 9781441952431
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Complex analysis, complex variables

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Unicity of Meromorphic Mappings“

Būtina įvertinti prekę

Goodreads reviews for „Unicity of Meromorphic Mappings“