0 Mėgstami
0Krepšelis

Unveiling the Power of Nonlinear Dirichlet Forms

41,73 
41,73 
2025-07-31 41.7300 InStock
Nemokamas pristatymas į paštomatus per 13-17 darbo dienų užsakymams nuo 19,00 

Knygos aprašymas

Beginning in the 60s, Rockafellar and others [BR65, Mor63, Roc70a, Roc70b, RW98] introduced and studied multivalued operators and subgradients of convex functionals. In fact, it is easy to show that the subgradient ¿Eb of Eb is equal to B. Hence, there is a direct connection between Eb,B and the semigroup S generated by B, without mentioning the original bilinear form. Studying bilinear forms by studying the energy has a major advantage. While bilinear forms are always associated with linear operators, subgradients of arbitrary, not necessarily quadratic, energies are not. This approach led to a new way of investigating a large class of nonlinear problems. In the 60s and 70s Brezis, Crandall, Pazy and others developed a theory of nonlinear accretive operators and nonlinear semigroups, ¿rst on Hilbert spaces [Lio69, BP72, Kat67, Bre73] and later on also on Banach spaces [CL71, CP72]. Surprisingly this theory closely resembles the linear theory sketched previously. Among other results, they showed that a proper, convex and lower semicontinuous map E : H ¿ (¿¿, ¿] on a Hilbert space H admits a m-accretive subgradient ¿E, which in turn generates a semigroup R of Lipschitz continuous contractions such that t ¿¿¿ Rtu0 is the unique mild solution of the abstract Cauchy problem ¿tu + ¿Eu =0,

Informacija

Autorius: Class
Leidėjas: tredition
Išleidimo metai: 2024
Knygos puslapių skaičius: 172
ISBN-10: 3384254678
ISBN-13: 9783384254672
Formatas: Knyga minkštu viršeliu
Kalba: Anglų
Žanras: Mathematical foundations

Pirkėjų atsiliepimai

Parašykite atsiliepimą apie „Unveiling the Power of Nonlinear Dirichlet Forms“

Būtina įvertinti prekę

Goodreads reviews for „Unveiling the Power of Nonlinear Dirichlet Forms“