This book presents a comprehensive treatment of visual analysis of behaviour from computational-modelling and algorithm-design perspectives. Topics: covers learning-group activity models, unsupervised behaviour profiling, hierarchical behaviour discovery, learning behavioural context, modelling rare behaviours, and ¿man-in-the-loop¿ active learning; examines multi-camera behaviour correlation, person re-identification, and ¿connecting-the-dots¿ for abnormal behaviour detection; discusses Bayesian information criterion, Bayesian networks, ¿bag-of-words¿ representation, canonical correlation analysis, dynamic Bayesian networks, Gaussian mixtures, and Gibbs sampling; investigates hidden conditional random fields, hidden Markov models, human silhouette shapes, latent Dirichlet allocation, local binary patterns, locality preserving projection, and Markov processes; explores probabilistic graphical models, probabilistic topic models, space-time interest points, spectral clustering, and support vector machines.
Autorius: | Tao Xiang, Shaogang Gong, |
Leidėjas: | Springer London |
Išleidimo metai: | 2011 |
Knygos puslapių skaičius: | 376 |
ISBN-10: | 0857296698 |
ISBN-13: | 9780857296696 |
Formatas: | Knyga kietu viršeliu |
Kalba: | Anglų |
Žanras: | Maths for computer scientists |
Parašykite atsiliepimą apie „Visual Analysis of Behaviour: From Pixels to Semantics“